

IBM Research, Hawthorne NY

Managing Security of Virtual Machine Images in a Cloud Environment

Jinpeng Wei	Xiaolan Zhang, Glenn Ammons, Vasanth Bala	Peng Ning
Florida International University	IBM T J Watson Research Center	North Carolina State University

© 2008 IBM Corporation

Virtual Machine Images in a Typical Cloud

- E.g., VMware virtual appliance market place, Amazon machine images (AMIs) collection in EC2
- Facilitate deployment of new virtual machines
- Reduce management/configuration cost of the cloud users

VM image sharing is one of the underpinnings of cloud computing

Security Risks in an Image Repository

- The publisher's risk: inadvertent leaking of sensitive information (private data or intellectual properties) and unauthorized access to the image
 - Sensitive information is often stored without the publisher's awareness. E.g., autocomplete feature of some browsers
- The retriever's risk: running vulnerable or malicious virtual machine images
 - A retrieved image may be instantiated into a full-fledged intruder machine inside a corporate network. Easier way to deploy Trojan Horses
- The repository admin's risk: hosting and distributing images that contain malicious or illegal content
 - Software patches, software license compliance checks
 - No systematic way to track image ownership, provenance or derivation relationships

Solution Overview: Mirage

- An access control framework: regulates the sharing of VM images
- Image filters: remove unwanted information in the image
- A provenance tracking mechanism: tracks the derivation history of an image and the associated operations performed on the image

 A set of repository maintenance services, such as periodic virus scanning of the entire repository, that detect and fix vulnerabilities discovered after images are published

Implementation: the Mirage Image Library

Conventional image library

Disk granularity store

- Disk based representation
- No image relationships
- Hypervisor-dependent
- Merely a storage system for image disks

Mirage image library

Content addressable, file granularity store

- File based representation
- Image relationships (think CVS)
- Hypervisor-agnostic
- A sophisticated store with APIs to directly manipulate images without deploying them as instances or fully assembling their disks
- Conventional disk is reconstituted when an image is checked out

Preliminary Experiments

ClamAV scanning time

- The VM images are daily snapshots of a large, commercial, Eclipse-based development environment (6GB, ~60,000 files)
- Each unique file is scanned only once, even if shared among many VM images
- Scanning time gains depend on the similarity among VM images

Scan the CAS as if it is a single file system; For each infected file F { For all image manifests that contain a reference to F, flag the reference as 'infected';

Acknowledgements

IBM T. J. Watson Research Center

- Bowen Alpern
- Arun Iyengar
- Todd Mummert
- Darrell Reimer
- Jian Yin

Thank you!

http://www.cis.fiu.edu/~weijp