
1

Secure and Efficient Access to Outsourced DataSecure and Efficient Access to Outsourced Data

Weichao Wang, Zhiwei Li, Rodney Owens, Bharat
Bhargava

CCSW 2009: The ACM Cloud Computing Security Workshop

2

The Problem

Providing secure and efficient access to outsourced data
– An important component of cloud computing
– Foundation for information management and other operations

the security guidance published by Cloud Security Alliance
– strong encryption and scalable key management
– information lifecycle management
– system availability and performance

3

Investigated Environment

Owner-write-user-read Scenario
– Data can be updated only by the original owner
– Users read the information according to access rights
– Example Application: LHC (Large Hadron Collider)

4

The Solution

Fine grained access control to outsourced data
– encrypt every data block with a different symmetric key

Flexible and efficient management
– adopt the key derivation method to reduce the number of

secrets maintained

Data isolation among end users
– adopt over-encryption
– lazy revocation

Mechanisms to handle dynamics in both user access rights
and outsourced data

5

Fine grained access control

Encrypt every data block with a different symmetric key
– Data blocks
– Encryption keys

Worst case
– Storage overhead linear to n
– Communication overhead linear to l

6

Key-derivation-based data block
encryption

Key derivation method
– Generate the data block encryption keys through a hierarchy
– Every key in the hierarchy can be derived by combining its

parent node and some public information
– Calculation of one-way functions

7

Key derivation hierarchy

8

Issues of the key hierarchy

Account for data updates
– leave some room for the insertion and appending operations

Only distribute necessary keys
– we should not disclose keys of the blocks that are temporarily

missing

Impact of users' access rights on the communication
overhead
– organize data blocks with similar access patterns into groups

9

Data Access Procedure

1. (End user) sends a data access request to the data owner

2. (Data owner) authenticate the sender, verify the request,
and determine the smallest key set

K’
ACM index
cert

10

Data Access Procedure

3. (End user) sends to the service provider

4. (Service provider) verify the cert, check the user and ACM index,
and retrieve data blocks and conduct the over-encryption

5. (End user) receive the data blocks, use seed and K’ to derive keys,
and then recover the data

11

Over-encryption

Confidentiality of the outsourced data
– Prevent revoked users from getting access to out-sourced data

through eavesdropping

P(): a pseudo random bit sequence generator
– Shared between service provider and end users

Given a seed, P() can generate a sequence of pseudo random
bits

Procedure
– Use seed and P() generate a sequence of pseudo random bits
– Use this bit sequence as one-time pad xor it to the encrypted

block

12

Dynamics in User Access Rights

Grant Access Right
– Change access control matrix
– Increase the value of ACM index
– Service provider and the end user do not need to change

13

Dynamics in User Access Rights

Revoke Access Right
– Depends on whether or not the service provider conducts over-

encryption

If service provider conducts over-encryption
– (Owner) updates the access control matrix and increase the

ACM index
– (Owner) send the new ACM index to the service provider until it

receives acknowledgement

If service provider refuses to conducts over-encryption
– Adopt the lazy revocation method to prevent end users from

reading updated blocks
– trades re-encryption and data access overhead for a degree of

security

14

Dynamics in Outsourced Data

Block Deletion
– use a special control block to replace
– label non-existence in the access control matrix

Block Insertion /Appending
– locate an unused block index
– derive the encryption key
– encrypt the data block
– store it on the service provider
– insert new data blocks based on their access patterns

15

Dynamics in Outsourced Data

Block Update

Control block:
(1). Pointer to the new data block
(2). Information used to derive the encryption key of Di’
(3). Information to verify integrity

16

Overhead of the proposed approach

Outsourced data size: 10 PB
Data block size: 4 KB
Key hierarchy height: p = 42

User retrieve 1GB=250,000 blocks

17

Comparison to approach proposed by
Atallah et al. (CCS’05)

Their approach is more generic

However, our approach
– has less communication and storage overhead for data retrieval

when they have infrequent update operations
– handles user revocation without impacting service provider

(over-encryption, lazy-revocation)

18

Conclusion

Propose a mechanism to achieve secure and efficient access
to outsourced data in owner-write-users-read applications.

Analysis shows that the key derivation procedure based on
hash functions will introduce very limited overhead.

Use over-encryption and/or lazy revocation to prevent
revoked users from getting access to updated data blocks.

We design mechanisms to handle both updates to outsourced
data and changes in user access rights.

19

Future work

Design a new scheme for key management for many-write-
many-read applications

Further reduce the number of keys by recognizing the access
patterns of data blocks

Develop a new approach to secure Storage-as-a-Service.

