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The underlying problem

m Goal: Controlled data sharing

m \When protecting content, how do parties
know if they have data worth sharing?

m Anonymous search




Further system requirements

m Search efficiency - sublinear

m Multiple parties
m authentication — limit parties that can search
® anonymization - hide querier identity




Our solution

m System architecture
m Building blocks

m Analysis

m Implementation

m Test results



Search

m What is efficient search? — sublinearity

m decryption capability for matching ciphertext does
not work

m How to achieve?

m deterministic encryption [BBOO7] — high min entropy
of plaintext domain, replace randomness with hash

m Bloom filters

m [rade-offs
m relaxed security notions — equality pattern leaked
m false positives — can be bounded



System architecture

m Index Server — encrypted search

m Query Router — authentication and user
anonymity
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Re-routable encryption

m Goal
= A has some information
m A trusts B to distribute, but not to see
= How to control distribution”?
m Ciphertext transformation under different keys
m Encryption scheme with group property



PH-DSAEP+

m Private key deterministic encryption —
following BBOOQO7

m Pohlig-Hellman function
m Group property:
PHy+( PH; (X)) = PH440(X)
m Message padding SAEP+ [Boneh01]
m Randomness r replaced by a hash



Bloom Filter Efficient Search

m Bloom filters — extend the idea of hashing
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BFs for Document Search

m  BF per document with stemmed words entries




Secure Anonymous Database
Search (SADS)
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Trust Assumptions — IS, QR

m Trust distribution — semi-honest IS, QR:

m QR - correct key transformation

m |S - correct BF search
m Privacy with respect to IS

m |S does not know relation of BFs to documents

m Client anonymity - cannot link queries of one client
m Privacy with respect to QR

m Query privacy — up to equality, PH-DSAEP+

m Result privacy



Security Guarantees

m Server participates only in preprocessing

m Client
m Authenticated by QR

m Learns only relevant result — adjustable false
positive rate, no false negatives

m Collusion of IS and QR;

m Search pattern in results leaked
m No search capability - cannot submit queries



Index implementation

m What is bitslicing?

—= Hacord 1 BF
—= Record 2 BF
—= Hecord & B

m [ranspose

m [rack 'zeroed' slices
m What is gained?

m Don’'t read unnecessary |

m Cache behavior s 11 [ it B
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Better Boolean queries

m The naive way to do and/or queries
m Run term queries in parallel
m Union/intersect

m How we can do it better in sliced indexes
m AND queries unioned in query indices
m OR queries processed in parallel

m OR query indices are handled in order of
frequency in queries



Performance

m Constant search time per BF

m Parallel search over multiple BFs (minimal
overhead)

m \What is considered “acceptable”, compare
with network delay

Local server | trans US Europe

Ping time (ms) |0.227 90.615 110.978




Corpus size

Average Query Search Time for Different Database Sizes

I | | | I I()Freq .
Low Freq
il Mid Freq --------
HighFreq
80
n
e
£
) 60
=
e
o
©
()]
@ " a0l
20 ///////
o Y L I : | |
1000 5000 10000 20000 30000 50000

Number of documents in the database




OR improvement

Ratio of Search Times for One N-Term Query and N Single Queries
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Conclusion

m New search problem

m Efficient solution

m Introduction of a new encryption method
m Re-routable encryption primitive



Thank You!

m Questions?



