Secure Anonymous
Database Search

Mariana Raykova
Binh Vo
Steven Bellovin
Tal Malkin

esearch.Provo3 - Groupl

File Configuation Log Statistics Actions telp
[Research.Proves Up Tine: 3 Days 8 Hrs 13 Hins
Groupilise Post Office Agent

Processing * Busy: 0 3 0 ©/5 Requests: 3731 Total Hessages: 0

I @iyt 2| Requests Pending: 0 Undeliverable:

File Queues: 0| User Tined Out: 2 Problen Hessages: 0

00:00301 803 Check disk space every: 5 (nins)

00300501 803 wore than every: 2 (hrs)

Perform disk check actions no

Event #1 : Tefault POR Disk Check Event

Free disk space old:

Action Set #L : Default POA Disk Check fctions

Hail message o adninistrator: upon failure

Tupe of database Files to check: User Hsg Doc

Database check action: Reduce

Telete tenporaru/backup Files older than (days): 1

00; 03

00:00301 803 Database Haintenance Events:

00: €5 " Event 1. Toult PO HailboLibrary Hairtanance Evet
(5):

3 Tine to perforn action(s): Hidn
5

ight (12am)

00; 803 Action Set #L : Default POA Hailbow/Library Haintenance Actions.
00:00:01 803 Tupe of database files to checks User Hsg Toc

00; 803 Database check action; Analuze/Fixup

00: 803 Level of database analysis and verification: Structural

00; 803 Telete tenporary/backup Files older than (daus): 7

0
00:00301 803
00:00114 1A Guardian database: (K

>

The underlying problem

m Goal: Controlled data sharing

m \When protecting content, how do parties
know if they have data worth sharing?

m Anonymous search

Further system requirements

m Search efficiency - sublinear

m Multiple parties
m authentication — limit parties that can search
® anonymization - hide querier identity

Our solution

m System architecture
m Building blocks

m Analysis

m Implementation

m Test results

Search

m What is efficient search? — sublinearity

m decryption capability for matching ciphertext does
not work

m How to achieve?

m deterministic encryption [BBOO7] — high min entropy
of plaintext domain, replace randomness with hash

m Bloom filters

m [rade-offs
m relaxed security notions — equality pattern leaked
m false positives — can be bounded

System architecture

m Index Server — encrypted search

m Query Router — authentication and user
anonymity

Search

Index:Server |
encrypted

database
transformdd encrypted result
query

~ Query Router 0
> QR _—

encrypte
Server query
, —

transformed
result

Re-routable encryption

m Goal
= A has some information
m A trusts B to distribute, but not to see
= How to control distribution”?
m Ciphertext transformation under different keys
m Encryption scheme with group property

PH-DSAEP+

m Private key deterministic encryption —
following BBOOQO7

m Pohlig-Hellman function
m Group property:
PHy+(PH; (X)) = PH440(X)
m Message padding SAEP+ [Boneh01]
m Randomness r replaced by a hash

Bloom Filter Efficient Search

m Bloom filters — extend the idea of hashing

;
H
.
o H: 1
W
WV _ :
0
H.
.
;

BFs for Document Search

m BF per document with stemmed words entries

Secure Anonymous Database
Search (SADS)

Index Server) :
_7<::>;: BF Search(11i, ..., 1k)=
'z {rl1, ..., ¥rn} = res v

res' = PH-SAEP+(res v,
IS key)

document BFs
under

Server's key/ Bp indices(c')
= {il, e o o g ik}

Query Router
QR

res"' = PH-SAEP+(res',

¢ = PH-DSAEP+(c, tranform key for Client)

transform key for S)

c = PH-DSAEP+(query, -
Client's key) Client

Trust Assumptions — IS, QR

m Trust distribution — semi-honest IS, QR:

m QR - correct key transformation

m |S - correct BF search
m Privacy with respect to IS

m |S does not know relation of BFs to documents

m Client anonymity - cannot link queries of one client
m Privacy with respect to QR

m Query privacy — up to equality, PH-DSAEP+

m Result privacy

Security Guarantees

m Server participates only in preprocessing

m Client
m Authenticated by QR

m Learns only relevant result — adjustable false
positive rate, no false negatives

m Collusion of IS and QR;

m Search pattern in results leaked
m No search capability - cannot submit queries

Index implementation

m What is bitslicing?

—= Hacord 1 BF
—= Record 2 BF
—= Hecord & B

m [ranspose

m [rack 'zeroed' slices
m What is gained?

m Don’'t read unnecessary |

m Cache behavior s 11 [it B

BF index 3 BF indexm

—=Record n-28 BF
— Hecord n-1 BF
e BRecord n BE

Better Boolean queries

m The naive way to do and/or queries
m Run term queries in parallel
m Union/intersect

m How we can do it better in sliced indexes
m AND queries unioned in query indices
m OR queries processed in parallel

m OR query indices are handled in order of
frequency in queries

Performance

m Constant search time per BF

m Parallel search over multiple BFs (minimal
overhead)

m \What is considered “acceptable”, compare
with network delay

Local server | trans US Europe

Ping time (ms) |0.227 90.615 110.978

Corpus size

Average Query Search Time for Different Database Sizes

I | | | I I()Freq .
Low Freq
il Mid Freq --------
HighFreq
80
n
e
£
) 60
=
e
o
©
()]
@ " a0l
20 ///////
o Y L I : | |
1000 5000 10000 20000 30000 50000

Number of documents in the database

OR improvement

Ratio of Search Times for One N-Term Query and N Single Queries

N-Term query/N single queries

0.8

0.6

0.4

0.2

I

1000docs —+—
5000docs
10000docs ---*---
50000docs 3~

i\
N NN
\“ \ \\"-\\
o3 \\\+\
‘ _ .
B = oL ¥
B ----------
"""" W
| | | |
2 Terms 3 Terms 4 Terms 5 Terms

Number of terms in OR query

Conclusion

m New search problem

m Efficient solution

m Introduction of a new encryption method
m Re-routable encryption primitive

Thank You!

m Questions?

